
IEEE Network • January/February 200110

illions of dollars are lost, a company folds, and
thousands of employees are let go, throwing a
community into economic chaos. These events
could result from discontinued funding from

Silicon Valley investors becoming aware of continued reports
of poor quality of service (QoS), security problems, and the
inability of clients to access the company’s Web sites. This
ingenious company was the first to integrate voice, video, and
data all on the same network based on a company’s policies.
The company’s untimely demise was the result of conflicting
network policies that were disseminated automatically through-
out the network’s policy servers, causing erratic network per-
formance. This scenario, although extreme, shows the
importance of being able to represent the network policy
goals of a company while simultaneously verifying that those
goals do not conflict with each other.

To understand how policy can play a role in managing a
network, policy must be defined and applied to communica-
tions networks. The Internet Engineering Task Force (IETF)
has proposed an Internet-draft of terminology for describing
network policy [1] and provides many of the definitions used
throughout this article.

A policy is formally defined as an aggregation of policy rules
[1]. Each policy rule is made up of a set of conditions and a

corresponding set of actions. The conditions define when the
policy rule is applicable. Once a policy rule is so activated, one
or more actions contained by that policy rule may then be exe-
cuted. These actions are associated with either meeting or not
meeting the set of conditions specified in the policy rule. In
other words, a policy specifies what action(s) must be taken
when a set of associated conditions are met.

A simple view of policy in regard to networks is that policy
constrains communications. Specifically, network policy
defines the relationship between clients using network
resources and the network elements that provide those
resources. A client in this case refers to users as well as appli-
cations and services.

Network policy allows administrators to manage network
elements to provide service to a set of clients. If every system
were permitted to communicate with all other systems without
restriction, there would be no need for network policies.
Increasingly, networks that once only supported best-effort
traffic are integrating voice and data as well. Without a means
for network managers to control the use of the network, mis-
sion-critical applications and general network performance
are going to suffer, and there will be little hope of supporting
future real-time applications.

Network policies are grouped into three general areas:
• How the policy is used
• How the policy is triggered
• At which level the policy is applied

A usage policy describes which services will be used to

U.S. Government Work Not Protected by U.S. Copyright

Network Policy Languages:
A Survey and a New Approach

Gary N. Stone, Bert Lundy, and Geoffrey G. Xie, U.S Department of Defense

Abstract
In this article a survey of current network policy languages is presented. Next, a sum-
mary of the techniques for detecting policy conflicts is given. Finally, a new lan-
guage, Path-Based Policy Language, which offers improvements to these is
introduced. Previous network policy languages vary from the very specific, using
packet filters at the bit level, to the more abstract where concepts are represented,
with implementation details left up to individual network devices. As background
information a policy framework model and policy-based routing protocols are discussed.
PPL’s path-based approach for representing network policies is advantageous in that
quality of service and security policies can be associated with an explicit path
through the network. This assignment of policies to network flows aids in new initia-
tives such as integrated services. The more stringent requirement of supporting path-based
policies can easily be relaxed with the use of wild card characters to also support
differentiated services and best-effort service, which is provided by the Internet
today.

MM

This work was supported in part by DARPA under the NGI program and
a grant from NASA Ames Research Center.

IEEE Network • January/February 2001 11

maintain the current state of the network or to transition to a
new state. Services which may be available in the network are
differentiated service classes, virtual private networks, encryp-
tion capability, and so on. A usage policy also describes how
those services will be used. For example, the ability to differ-
entiate the handling of separate flows of traffic based on the
service class in which they reside or to which virtual channel
they belong describes how a service is used.

Policies can be triggered in two ways, either statically or
dynamically. “Static policies apply a fixed set of actions in a
pre-determined way according to a set of pre-defined parame-
ters that determine how the policy is used” [1]. Examples of
static policies are: transit traffic is not permitted during nor-
mal working hours; Internet radio is only permitted after 4:00
p.m.; for security reasons certain network addresses are
denied access to network resources.

Dynamic policies are only enforced when needed, and are
based on changing conditions of the network such as conges-
tion, packet loss, or the loss of a network router. To support
the dynamic and sometimes unexpected nature of the net-
work, actions can be triggered when an event causes a policy
condition to be met. Examples of dynamic polices are: when
the network gets congested, streaming video traffic is disal-
lowed; or when a particular service class of user is utilizing the
network, lower best-effort traffic to only 25 percent of link
capacity.

Last, the level of the policy is applied as a category. These
policies are differentiated by their granularity, such as the
application level, user level, class level, or service level. For
example, a mission-critical application may be given priority
over all other network traffic, or all users in the silver class
(differentiated services) have priority over the bronze class,
but must succumb to the gold class.

Later in this article the authors introduce a policy lan-
guage based on path. Path-based policy is defined as a policy
were all attributes associated with the policy, which include
the service type of the traffic, conditions used to trigger the
policy, and the actions executed when the policy is triggered,
are all bound to a predefined path. Using the path as the
fundamental building block of a policy statement provides
great control and flexibility. The ability to specify an explicit
path, which represents each node from source to destination,
enables us to create virtual channels where resources are
reserved to support real-time applications. These paths can
be specified by either a user or a network administrator. If a
path had the restriction of always including each node in the
path, the number of unique paths needed to support a net-
work could soon become overwhelming. This is why a path
may include wild card characters, and thus adds great flexibil-
ity to the way policies are specified. The use of a wild card
character allows for path aggregation, which greatly reduces
the number of paths that have to be specified, and at the
extreme one path statement can specify all possible paths
under an administrator’s control.

Policy-based networking — the ability to control a network-
ing environment by specifying and enforcing policies — is
gaining increased interest among the network community.
Policy-based networking helps manage user and application
priority, QoS, and security rights based on management poli-
cies. Because of an increasing industry trend to deploy busi-
ness applications over the network and the convergence of
voice, video, and data applications on the same network,
major network vendors such as Cisco, Nortel, and Lucent
Technologies are developing products to support network
management. These products allow network managers to cre-
ate and implement policies that can prioritize the use of net-
work resources by different network applications so that

bandwidth will be guaranteed to the most business-critical
applications during times of network congestion. For example,
a company that offers IP telephony — which has strict timing
requirements — must not permit a large data file transfer to
interfere. Network management also provides the ability to
restrict the use of network segments by denying access to
unwanted and perhaps malicious traffic. The ability to create
and enforce network policies adds intelligence to a network
that was previously based only on best-effort packet traffic.
Rather than adding more bandwidth, which is expensive and
time-consuming, to solve existing network congestion, compa-
nies can use network policies to allow for important applica-
tions and user groups to receive network priority over
secondary network users. It is important to have an underlying
mechanism to support and enforce these defined network
policies. The IETF has attempted to define such an architec-
ture in the working draft, “Policy Framework Core Informa-
tion Model” [2].

Many of the aspects of this mechanism needed to support
policy-based networking are being addressed, such as policy
storage structures, policy servers, and protocols to deliver
translated policies to enforcement points. One aspect of poli-
cy-based networking that does not seem to be receiving much
attention is the verification of policies that are going to be
applied to the network. Consistent enforcement of network
policies, often specified by different people at different times,
is impossible if those policies conflict with each other. Thus, a
method is needed to detect and deal with conflicting policies
before they are distributed throughout the network to the pol-
icy enforcement points.

IETF Policy Framework Core Information Model — With the
emergence of service models such as differentiated services
(DS) [3, 4], integrated services (IS) [3, 4], and multiprotocol
label switching (MPLS) [4], the IETF has published a working
draft for terminology to describe network policies and services
[2]. The IETF tries to standardize a mechanism as well as a
language in this draft by developing a scalable architecture for
policy administration and distribution of network policies. A
key to this architecture is a common language to represent
and provide a consistent implementation of policy.

An underlying assumption of this draft is that policies are
stored in a centralized repository. The policy repository is one
of three important entities of the model. The other entities
are the policy enforcement points (PEPs) and policy decision
point (PDP).

A PEP is a component of a network node (e.g., a router,
switch, or hub) where the policy decisions are actually
enforced. When the PEP requires a policy decision about a
new flow of traffic or authentication, for example, the PEP
will send a request to a PDP.

The PDP is the entity in the network where policy decisions
are made. This PDP, which may reside on a remote server,
will make policy decisions using information retrieved from
policy repositories.

Communication is needed to and from the policy repository
as well as between the PDP and the PEP. In many proposals
the policy repository is a directory, and therefore the appro-
priate access protocol would be the Lightweight Directory
Access Protocol (LDAP). Examples of a policy protocol,
which is used to request and reply to policy decisions, could
be the Common Open Policy Service (COPS) protocol [5] and
Simple Network Management Protocol (SNMP) [6].

Since the PEPs can potentially be from multiple vendors, a
common policy language is needed to support the dissemina-
tion of policy information to these devices. In the Policy
Framework Core Information Model [2], policy is defined as

IEEE Network • January/February 200112

an aggregation of policy rules. Each of these policy rules is
composed of a set of conditions and a set of actions to per-
form if the conditions are met. The general form of these con-
ditional statements is

IF <condition 1> AND <condition 2> … AND <condition N>
THEN <action 1> … AND <action N>

The policy representation includes a means to prioritize
and order both the conditional statements as well as the poli-
cy actions. This is crucial when multiple policies exist and con-
flict. A conflict occurs when the conditions of at least two
policies are simultaneously satisfied, but the actions of at least
one of the policies cannot be simultaneously executed. For
example, a router may have two access control rules where
their conditions are simultaneously satisfied, but one contains
that action deny, the other permit. For example:

access-list 1 permit 131.1.30.00.0.0.255
access-list 1 deny 131.1.0.00.0.255.255

The first permits traffic with IP addresses beginning with
131.1.30 to pass. The second rule conflicts with the previous
one by denying traffic with any IP address beginning with
131.1. The first rule in an access list that satisfies the condi-
tional requirement is executed. This procedure resolves con-
flicts but puts the onus on the operator to enter the rules in
the correct order.

The rest of this article is organized into six sections. We
review policy-based routing protocols. A lot of early work on
the use of polices in networks occurred in the context of these
protocols. We discuss languages used to represent network
policies. These languages are at a more abstract level and can
be used to describe policies without low-level details. An
abstract language is beneficial when multiple devices and ven-
dors are involved. We will discuss languages used to describe
network traffic at a low level such as the protocol data unit
(PDU) level. These languages are more adept at defining pat-
terns for the selection of network traffic in the conditional
section of a policy. This article contains a review of research
efforts that involved using formal logic to determine consis-
tency between policies. This formal logic section provides
background information for features introduced with our new
language. We introduce our language, the Path-Based Policy
Language (PPL). Our goal is to represent network policies at
an abstract level in order to support heterogeneous networks,
while also providing translation of those policies into formal
logic. Having policies represented in logic will provide the
ability for theorem provers to detect conflicts. We then sum-
marize the article.

Policy-Based Routing Protocols
In this section three policy-based routing protocols are
reviewed. They provided a lot of early work on the use of
policies in networks. All of these protocols enable policies to
be enforced based on the elements of an explicit path through
the network.

Border Gateway Protocol

Lougheed and Rekhter define an interau-
tonomous routing protocol, Border Gateway Pro-
tocol (BGP) [7–9], where routers share
reachability information by passing autonomous
system1 (AS) information between neighbors.
This exchange of routing information contains
full AS paths the traffic will transit to reach a dis-
tant network. Path information is not only useful
in removing loops in the network, but also allows

policy decisions to be made at the AS level. Policy enforce-
ment is not part of the protocol itself, but instead is manually
configured at each BGP router.

Policy decisions made by BGP [10, 11] are based on config-
uration information manually configured into each router by
an AS administrator. The enforcement of policies is accom-
plished in two ways. The first is by specifying the procedure
used by the AS router itself to select the best paths, and the
second is by controlling the redistribution of routing informa-
tion to neighboring ASs.

Policy decisions can be based on various preferences and
constraints. Since the complete AS path is advertised to
neighboring routers, particular paths can be rejected based on
an AS that is contained in the path. The reasons a particular
path are rejected vary. For example, a particular AS whose
control is under that of a major competitor may want to be
avoided, causing one or more paths that include this AS to be
eliminated from consideration. Performance information can
also be used to eliminate paths from consideration. If an AS
has access to metrics related to performance such as link
speed, delay or capacity, these measurements can be used to
rate multiple paths for selection.

BGP, allowing an AS to control redistribution of routing
information, is the means by which an AS can enforce policies
on others. For example, if an AS does not want to be used for
transit traffic, it does not advertise routes to networks other
than those directly connected to it.

Fundamentally, BGP is a distance-vector protocol, but instead
of maintaining just the cost to each destination, BGP keeps track
of the exact path used. This use of the path categorizes BGP as a
path-vector protocol. As mentioned earlier, policies are not part
of the BGP protocol itself; therefore, each AS may have its own
means of evaluating paths. Each router contains a module for
examining paths to a given destination and scoring them. This
scoring mechanism, which may include local policy information,
is then used to choose the best path to a destination. BGP
routers can only advertise paths they themselves use. This pre-
vents an AS from sending datagrams to a distant network using
one path, but advertising an alternative path for others to use.

Inter-Domain Routing Protocol (IDRP)
Kunzinger and Thomas describe the Inter-Domain Routing
Protocol (IDRP) [12, 13], which is the International Organiza-
tion for Standardization (ISO) protocol for routing between
ASs. IDRP came out of the same work as BGP, and may be
considered a follow-on to BGP. Just as in BGP, IDRP sup-
ports policy-based routing, but is not concerned with the
implementation details of those policies. Policy-based routing
can restrict access, and therefore enforce policy, by controlling
the distribution of routing information to neighboring routers.

� Figure 1. A policy term.

((Hs, ARs, ARent), (Hd, ARd, ARexit), UCI, Cg)
where:

Hs is the source host address
ARs is the source AR
ARent is the entry AR (previous hop)
Hd is the destination host address
ARd is the destination AR
ARexit is the exit (last hop)
UCI is the User Class Id (e.g., Gold, Silver Bronze service levels)
Cg are any global conditions

1 AS and administrative region (AR) are a set of routers under a single
technical administration, using one or more interior gateway protocols to
route packets within the AS, and using an exterior gateway protocol to
route packets to other ASs [3].

IEEE Network • January/February 2001 13

This selective distribution of information can enable
the AS to deny all transit traffic, or deny access to
only certain network paths.

The IDRP router accepts router information from
neighboring routers, which express their views of the
network, and uses this gathered information to con-
struct its own view of the network. The IDRP router
at this point can use local policy information to select
or reject routes accordingly. The IDRP router adver-
tises its view of the network with internal gateway pro-
tocols such as Open Shortest Path First (OSPF) or
Routing Information Protocol (RIP) so that all routers
within the AS have a consistent view of the network.

Just as ASs were used to refer to an entire set of IP net-
works, IDRP supports a concept called routing confederations.
A routing confederation is a grouping of ASs to make manag-
ing the Internet more manageable. As the Internet has grown,
the number of ASs has also grown, making its management
less efficient. These routing confederations are quite flexible
in that they can be subsets of and even overlap each other.

IDRP uses path-vector routing to propagate routing infor-
mation. Path-vector routing, as used in BGP, explicitly lists
the entire path to each destination. This concept can alleviate
network loops as well as enforce policy constraints based on
the ASs or confederations that make up the path.

Another feature supported in IDRP is the ability to reduce
the number of path vectors by using route aggregation. Route
aggregation lets an IDRP router combine multiple IP address
prefixes or destinations to create a single advertisement for
them all. This feature greatly reduces the number of individual
destinations a router must support as well as reducing the
amount of data that has to be sent during the advertising phase.

Inter-Domain Policy Routing
Steenstrup presents a set of protocols [14] and architecture in
[15] for Inter-Doman Policy Routing (IDPR). Unlike BGP
and IDRP, IDPR uses link state routing to provide policy
routing among administrative domains (ADs).2 The primary
objective of IDPR is to provide traffic with routes that satisfy
the users’ service requirements while respecting the service
providers’ service restrictions [16]. Source policies represent
the users’ requirements and can consist of parameters such as
throughput, acceptable delay, cost of session, and domains to
avoid. Service providers specify transit policies, which specify
offered services and the conditions of their use.

The generation and selection of policy routes is based on
distributed routing information and the source policies speci-
fied by the domain administrator. IDPR forwards messages
across paths established using the policy routes generated.
Route generation is inherently complex and the most compu-
tationally intensive part of IDPR. The general policy route
generation problem involves a combination of service con-
straints, for example, finding a route delay of no more than S
seconds and a cost no greater than C. Most of these multicon-
straint routing problems are NP-Complete.

To reduce the size of the link state database, IDPR sup-
ports the ability to group ADs into superdomains. The exis-
tence of superdomains imposes a domain hierarchy within the
network. With a hierarchical approach only domain-level
information is needed to construct routes. This greatly

reduces the information needed to be maintained by a route
server. The size of the database will now depend on the num-
ber of domains and the policies associated with each.

A variant of Clark’s policy term was chosen to represent
policies in [15]. This variant allows for policies to be associat-
ed with a set of network elements that represents a path. A
policy based on paths is a great asset to policy-based routing
protocols.

Network Policy Languages
In this section all the major policy languages are discussed.
These languages are used to represent varying types of net-
work policies such as routing, access, and QoS.

Clark’s Policy Term
Seeing the importance of using network resources differently
and more efficiently, Clark proposed a template to represent
network policies [17]. This template, called a policy term, was
designed to enable a wide range of network policies to be rep-
resented. The work is based on the fundamental assumption
that Internet resources are grouped into administrative
regions (ARs). AR resources included such items as networks,
links, routers, and gateways. The format of a policy term is
shown in Fig. 1.

The first two “elements” of the policy term represent the
source and destination points, respectively. Each of these
consists of three parts, which provide for a wide range of
granularity while specifying the endpoints. To show the gran-
ularity available with this schema, here are some examples of
source and destination points that could be represented by
the diagram in Fig. 2. These source and destination points
use the special characters “*” and “-.” The “*” represents
the wild-card match, and the “-” is used to make sure the
AR entry or AR exit fields match the source AR or destina-
tion AR, respectively. These examples could be applied to
AR 2.

(*, *, *) (*,*,*)
No restrictions, allow all traffic flows to traverse without
restriction.

(*, 36, -) (*, 12,*)
Allow all hosts directly attached to AR 36 to pass if their
destination goes through AR 12 (e.g., host 131.120.1.13
may communicate with 216.34.20.1).

(131.120.1.13, 36, -) (216.32.74.53, 2, -)
The host with IP address 131.120.1.13 in AR 36 may
communicate with the host with IP address 216.32.74.53
in AR 2.

As the reader can see, the endpoints can be as explicit as
specifying a host or generic enough to allow all Internet
traffic. Although the use of these first two elements pro-

� Figure 2. A sample network diagram.

IP = 216.34.20.1

AR
2

AR
12

AR
36

AR
5

AR
20

IP = 216.32.74.53

IP = 216.32.74.50

IP = 131.120.1.13

2 Administrative domain refers to any collection of contiguous networks,
gateways, links, and hosts governed by a single administrative authority
who selects the intradomain routing procedures and addressing schemes,
specifies service restrictions for transit traffic, and defines service require-
ments for locally generated traffic.

IEEE Network • January/February 200114

vides for a flexible way to permit traffic flow, it can become
cumbersome at times. If, for example, the reader wanted to
allow only traffic from universities to flow across an AR, it
could be accomplished by creating many policy terms, one
for each university. This list of policy terms could become
quite large, so the third “element” of the policy term, UCI,
can be used to make the implementation of this policy
more manageable. A policy term that would only allow uni-
versity traffic to flow across an AR could be represented
like this:

((*,*,*), (*,*,*), University, *)
The endpoints are such that if the UCI element was not
used, all traffic would flow across the AR. Using the
UCI as a filter, only traffic marked with a University tag
would be permitted to pass.

The last element field of the policy term, Cg, is used for
global conditions. Examples of information that might be held
in this field are, “unauthenticated UCI,” “no-per-packet
charge,” and “limited to n% of available bandwidth.”

((*,*,*),(*,*,*), University, {unauthenticated UCI})
This would allow only traffic marked as University to flow
through the AR. There is no need to verify that the packet
traffic was really from a university host.

Although this was a good start for an abstract network poli-
cy representation, which is needed for heterogeneous environ-
ments, it has limitations. There is no ability to represent
explicit paths formed by a sequence of ARs as part of the
term. Only single ARs and the wild card character “*” are
allowed. Without this capability, support of Integrated Ser-
vices requires several network policies distributed throughout
the network to be combined for verification of a path. Conse-
quently, there is no ability to exclude a set of ARs from a
term to which a general policy is applied.

Policy Framework Definition
Language

Strassner and Schliemier define the
Policy Framework Definition Lan-
guage (PFDL) [18] which provides a
mapping of network service require-
ments from a business specification
to a vendor- and device-indepen-
dent format. The benefit of such a
language is that network policy can
exist in a heterogeneous environ-
ment of devices that support policy
enforcement.

With the development of stan-
dards to provide QoS, like integrat-
ed services with Resource
Reservation Protocol (RSVP)3 and
differentiated services, the IETF
working group on Policy Manage-
ment has proposed this language.
The belief is that without a means
of representing, administering, and
distributing consistent policy infor-
mation, these QoS standards that
classify and give preferential treat-
ment to certain types of traffic flows
will not see widescale deployment.

In this first release of the draft,
the grammar was only available in

Backus-Naur Form (BNF), and no explicit examples were pre-
sented. Attributes the authors believe should be supported by
the language are discussed. As with many of these efforts to
represent policy, the authors believe that having a language
which supports multiple network devices and vendors is the
key to successful policy deployment.

The design of PFDL is based on the Common Information
Model (CIM) [2] being designed by the Distributed Manage-
ment Task Force (DMTF). This model defines a hierarchy of
object classes that can be used to represent policy information.

The class and relationship hierarchy of the CIM model are
used to help define the structure of the PFDL grammar, see
Fig. 3. The basic premise is that a policy is an aggregation4 of
policy rules. A policy rule defines a sequence of actions to be
initiated when a corresponding set of conditions is satisfied.
Five classes defined to support the CIM are the ComplexPoli-
cy class, SimplePolicy class, PolicyRule class, PolicyCondition
class, and PolicyAction class. Their relationship to each other
is shown in Fig. 3.

A PolicyRule contains a set of PolicyConditions and a set of
PolicyActions. When the set of PolicyConditions are meet, the
set of PolicyActions will be executed.

A PolicyConditionStatement is composed of a category and
value pair. These two components are specific to a particular
knowledge domain, whether QoS, security, or any other
domain. Providing conditions and actions for a given knowl-
edge domain accommodates the interoperability requirement
for the language. It will provide the means for multiple ven-
dors to supply components to a general policy architecture.

A PolicyAction is a class in the PFDL model that consists of

� Figure 3. A PFDL hierarchy.

ComplexPolicy

PolicyConditions

1 ..n

1 ..n ORed

PolicyConditionList

PolicyConditionCategory PolicyConditionValue

PolicyConditionStatement

1 ..n ANDed

PolicyActions

1 ..n

PolicyActionList

PolicyActionCategory PolicyActionValue

PolicyActionStatement

1 ..n

SimplePolicy

PolicyRules

1 ..n

3 RSVP defines how applications can place reservations, and how they can
relinquish those resources once their need ends.

4 An aggregation is a string form of an association. An aggregation is usu-
ally used to represent a “whole-part” relationship.

IEEE Network • January/February 2001 15

an action or a list of actions that will be executed when the
conditions associated with a policy are evaluated to true.
These actions can be executed in either a specific order or any
order, which is the default. Along with the ordering of policy
actions, the ability exists for the conditional execution of one
or more actions based on the results of previous actions. The
reader can see from Fig. 3 that the hierarchy of the PolicyAc-
tions class is similar to the PolicyConditions class.

With possibly hundreds, perhaps thousands, of policies to
be supported in a network, the ability to detect conflicting
policies is crucial. The authors of PFDL are aware of the need
to both detect as well as support facilities to resolve conflicts.
This proposal groups policy conflicts into two different cate-
gories, intra- and interpolicy conflicts.

Intrapolicy conflicts are caused when the conditions of at
least two policies are simultaneously satisfied, but the execu-
tion of the actions of these policies cannot be executed at the
same time. Interpolicy conflicts are described as two or more
policies that, when applied to the network, result in conflicting
configuration commands specified for one or more network
devices. In this case, the conflict exists when the policy is
applied to a specific network or device(s). An example given
in the proposal is when two policies are executed such that
the number of queues in one network device is such that it
does not match the number of queues allocated in a second
device supporting the same traffic flow.

Once conflicting policies are detected, they may be resolved
in several different ways. The most obvious would be to modi-
fy the conditions or actions of the policies to remove the con-
flict. If this cannot be accomplished and the conflicting
policies must exist in the system, there are three different
ways to resolve them:
• Resolve the conflict by only executing the first policy in the

conflicting set.
• Use a priority scheme where only the highest-priority policy

in a conflicting situation will be executed.
• Use some type of metadata to determine which rule should

be applied. The difference between this and straight priori-
ty is that priority is inherently linear, whereas metadata
enables nonlinear solutions, such as branching, to be used.
PFDL does not support path-based policies. A path-based

capability aids in initiatives such as integrated services [3, 4]
and server and agent-based active network management
(SAAM) [19]. PFDL is a nice high-level framework, but lots
of details need to be filled in.

Routing Policy Specification Language
One of the activities of the Routing Policy System working
group of the IETF is to develop a language for describing rout-
ing policy constraints. Alaettinolgu, Meyer, et al. provide a ref-
erence for the language [20] and a guide on how to use the
language [21]. Routing Policy Specification Language (RPSL)
is a replacement for RIPE-81, the first language deployed in
the Internet for specifying routing policies, and is the current
Internet policy specification language. Specifying policies in
RPSL allows a network operator to specify routing policies in
the Internet routing registry (IRR) so that policies and
announcements can be checked for consistency. The IRR stores
the object-oriented policies of authorized organizations so that
others using the whois5 service can query them. Each object
that contributes to a policy stores pieces of information regard-
ing the policy. Each object used to represent the policies con-
tains attributes referred to as keys that can be either mandatory
or optional. RPSL is designed so that router configurations can
be generated from the policies described with the language.

Figure 4 is an example from [21] that represents a common
but perhaps simple policy. The aut-num represents the AS
number; in this case AS2 represents autonomous system 2.
The as-name and descr attributes are the AS’s name and
description, respectively. The most important attributes of this
aut-num are the import and export policies. The import clause
specifies import policies, the export clause export policies.

In this example, the import policy of “from AS1 accept
ANY” indicates that AS2 will accept any announcements that
AS1 sends. The second import policy states that AS2 only
accepts announcements from AS3 that originated in AS3 and
have paths composed of only AS3s.

The export policy of “to AS3 announce ANY” indicates that
any route AS2 has in its routing table will be passed on to AS3.
The second export allows the announcements of all routes from
AS2 or routes learned from AS3 to be sent to AS1.

The admin-c (administrative), tech-c (technical), mnt-by
(maintained by), and changed (last changed by) are attributes
that contain contact information. The values assigned to these
attributes are handles that uniquely identity the person
responsible for the attribute. The source entry indicates that
this object belongs to the RIPE6 registry.

RPSL represents routing policies well, but was not intended
to support policies regarding QoS or general access control
mechanisms.

Traffic Flow Languages
This section discusses languages used in the selection of net-
work traffic in the conditional section of a policy. At a lower
level than the languages above, these languages can be used
for pattern matching in network devices.

PAX Pattern Description Language
Nossik, Welfeld, and Richardson describe PAX [22], a special-
purpose language used to define pattern-matching criteria in
policy-based networking devices. PAX was intended primarily
for data communications networks, but is also generic enough

� Figure 4. An RPSL diagram and policy example.

aut-num: AS2
as-name: CAT-NET
deser: Catatonic State University
import: from AS1 accept ANY
import: from AS3 accept <^AS3+$>
export: to AS3 announce ANY
export: to AS1 announce AS2 AS3
admin-c: AO36-RIPE
tech-c: CO19-RIPE
mnt-by: OPS4-RIPE
tech-c: CO19-RIPE
mnt-by: OPS4-RIPE
changed: orange@ripe.net
source: RIPE

AS1 AS2 AS3

AS4 AS5

5 WHOIS is used to look up records in a Whois database. Each record has
a “handle”, a unique identifier assigned to it by the Network Information
Center (NIC). Each whois record will also have a name, record type, and
various other fields of information, all depending on the type of whois
record.

6 The RIPE Network Coordination Centre acts as the regional Internet
registry (RIR) for Europe and surrounding areas.

IEEE Network • January/February 200116

to be used for any kind of pattern recognition.
The language itself was designed to be much like the C

programming language. Viewing the code of a PAX program,
the reader will see features similar to C such as comments,
preprocessing directives, source file inclusion, conditional
compilation, import and export statements, and the use of
defines and macros.

The basic concept in PAX is the pattern, with simple pat-
terns combined to form more complex patterns. The use of
field concatenation and field combination, and the ability to
name patterns leads to a flexible and powerful language for
describing patterns in data communication.

Examples from [22] will provide the reader with a quick
idea of the syntax and features of the language. Two built-in
fields used in the following examples are BIT and UINT, used
to create the simplest of patterns.

BIT 16 — matches any 16 bits in the input
UINT 4 — matches any 4 bits; the value of

those bits is converted to an unsigned
numeric field

Figure 5 illustrates a pattern to match IPv4
headers of TCP/IP nonfragmented packets with-
out IP options. This figure shows how simple pat-
terns can be concatenated together to form more
complex patterns. This pattern matches the input
only when the 4-bit “version” element is equal to
decimal 4, the next element “ihl” equals the deci-
mal value 5, and the subsequent simple patterns
are all successfully matched.

Figure 6 represents two more features of the
PAX language. The first is the ability to name
the pattern for inclusion in other more complex
patterns, in this case IEEE_802_2_LLC. The sec-
ond is the use of a conditional field. Conditional
fields are used to describe patterns with varying
layouts depending on previous fields. Here when
the Control1 field is equal to 0b11, the next 6
bits are used to create a field called ShortCon-
trol. When the value of Control1 is not equal to
0b11, the next 14 bits are used to create a field
called LongControl.

Simple Ruleset Language
Brownlee describes the Simple Ruleset Language
(SRL) [23] as a procedural language for creating
rulesets for real-time traffic flow measurement
(RTFM). These rulesets, which specify the flows
to be measured and how much information
should be collected for each, are downloaded to

RTFM meters. The RTFM meters use a pattern-
matching engine to match the downloaded rule-
sets against attributes extracted from traffic flows
to select which flows to monitor. The attributes
applied to the traffic flows are specific to network
traffic, and map to such things as source and des-
tination addresses and port numbers. SRL is not
restricted to just traffic metering, but can be use-
ful in any application that involves selecting traf-
fic flows from a stream of packets.

There are two goals of SRL rulesets: to identify
network packets that are a part of the flow of
interest, and to take some action as a result of the
match. The identification of packets is done using
IF statements. Actions available include the ability
to save flow identification attributes, and to keep
statistical data about the attributes saved.

Figure 7 is an example that counts only TCP/IP packets
where the destination port is telnet, while saving the source
and destination address pair for each packet.

A Summary of Network Policy Languages — Table 1 summa-
rizes the languages from previous sections used to represent
network policies or support mechanisms for enforcing poli-
cies. The columns of this table represent criteria believed to
be useful in comparing the various languages. The “Support
automated conflict detection” column refers to the ability to
recognize different types of policy conflict as well as to pro-
vide a flexible means to resolve conflicts. The column labeled
“Suitable for integrated services” takes into account the ability
to efficiently support integrated services. An entry with a
medium value signifies that the language can represent a path
through the network, but multiple polices have to be com-
bined to do so. If a column has a high value, the policy lan-
guage can represent a path in a direct and intuitive manner,
and a policy can be applied directly to that path. The benefits

� Figure 5. A PAX pattern to match an IPv4 header.

{
version UINT 4 = = 4; /* IP version 4 packet */
ihl UINT 4 = = 5; /* length == 5 : no options */
typeOfService UINT 8;
totalLength UINT 16;
identification UINT 16;
flagReserved BIT 1 = = 0;
flagDontFragment BIT 1;
flagMoreFragments BIT 1 = = 0; /* last fragments only */
fragmentOffset UINT 13 = = 0; /* first fragments only */
timeToLive UINT 8;
protocol BIT 8 = = 6; /* Next protocol TCP */
headerChecksum BIT 16;
sourceAddress BIT 32;
destinationAddress BIT 32;

}

� Figure 6. A PAX pattern with a conditional field.

PATTERN IEEE_802_2_LLC {
DSAP BIT 8 <> 0xFF; /* Destination SAP not broadcast */
SSAP BIT 8 <> 0xFF; /* Source SAP not broadcast */
Control1 BIT 2;
LongControl BIT 14 WHEN Control1 <> 0b11;
ShortControl BIT 6 WHEN Control1 = = 0b11;

}

� Figure 7. An SRL ruleset to identify and count telnet packets.

#
Classify IP port numbers
#

define Ipv4 = 1; # Address Family number from RFC 1700
define telnet = 23; # Well-known Port numbers from RFC 1700
define tcp = 6; # Protocol numbers from RCF 1700

#
if SourcePeerType == Ipv4 save;
else ignore; # Not an Ipv4 packet

#
if (SourceTransType == tcp && DestTransAddress == telnet)
save, store FlowKind := ‘T’;

#
save SourcePeerAddress /32;
save DestPeerAddress /32;
count

#

IEEE Network • January/February 2001 17

of a high value are that policies which must
be associated with all the nodes along a
path can be represented with just one state-
ment. This greatly reduces the number of
policies statements a domain must main-
tain. The “Suitable for access control” col-
umn refers to the ability to permit or deny
access based on policy. The capacity to
establish a path through a network and
restrict access to that path is of great impor-
tance from a security point of view. The
column labeled “Target architecture” refers
to the storage location of polices. A dis-
tributed value means that policies are
stored throughout the network, perhaps on individual devices.
A centralized value refers to one or only a few locations
where all the policies are located. Having a centralized loca-
tion is beneficial when trying to detect conflicting policies.
The last column, “Ease of representing network policies,”
takes into account the ability of a user to intuitively represent
a policy with the language. Targeting our language to the
group of individuals responsible for representing policies
defined with natural language and entering them into a cen-
tral repository, the authors believe the more abstract and clos-
er to natural language, the easier they will be to understand.
Although these individuals may be versed in formal logic rep-
resentation, it is believed the majority will be more comfort-
able with an abstract rule-based language. The more abstract
the language and closer to a natural language, the higher the
value in the column. The greater the number of details that
have to be specified, the lower the value assigned.

Although the languages represented in Table 1 contain
many features, none of these languages individually contain
all the features provided with PPL. Two major features not
adequately addressed by any of these languages are the ability
to specify a complete path through a network, and the auto-
matic detection of conflicting policies.

Work in Logic Representation of Policies
This section discusses research using formal logic to represent
and detect conflicting policies. The policies represented here
are more general and involve the use of natural languages,
which tend to be ambiguous, to represent policies ranging
from resource management to security.

There has been a great deal of research on the topic of
formal representation of policies. Much of this research has
been in the area of representing security policies, and the
more general problem of translating ambiguous natural lan-
guage policies into some type of formal representation. Rep-
resenting network policies with an unambiguous language is
the key to detecting conflicts. A network policy language has
to be flexible enough to represent a wide range of policies,
and at the same time formal enough to support automatic
translation to logic. Once the policies are in a logical repre-
sentation, methods already developed from research in this
area will provide a means to check the consistency of multi-
ple policies.

Analyzing the Consistency of Security Policies
In [24], the development of a methodology for reasoning
about properties of security policies is discussed. Chovly and
Cuppens view a security policy as a specific case of regulation,
where a regulation defines which actions an agent is permit-
ted, obliged, or forbidden to perform. With this methodology
a system is made up of agents that can perform some actions
on some objects. In analyzing the consistency of security poli-

cies, focus is put on the ability to perform consistency checks
(e.g., check for conflicting situations) on the system, and to
have the ability to query a regulation to know which norms
apply in a given situation.

Formal logic is used to create an unambiguous representa-
tion of security polices. According to [24] the advantage of a
representation based on formal logic is the ability to precisely
define the axioms7 to reason about a regulation. With policies
defined by axioms, tools can now be developed to check the
system regulation for consistency.

Rather than associating norms (i.e., permissions, obliga-
tions, and prohibitions) with individuals, roles are created
with these attributes and individuals associated with these
roles. The individual inherits the norms associated with a role
when the individual is playing that role. A conflict can only
exist when an individual is playing different roles at the same
time, because of an assumption in their research that norms
within a role are conflict-free.

To resolve conflicts when an individual is playing multiple
roles, an ordering is applied when roles are merged. The
order represents a priority between them, and the order is
assumed to be total.

Tools written in Prolog were developed that checked the
consistency of the security policies as well as an algorithm for
solving conflicts when an individual is playing different roles
at the same time.

On the Axiomatization of Security Policies: Some
Tentative Observations About Logic Representation
In [25], Michael et al. add an intermediate step to the tradi-
tional approach of translating natural language security poli-
cies into their axiom representation. Once the policies are in
axiom representation, automated reasoning systems are used
to detect conflicts. Errors in translation into axiom form can
lead to unidentified conflicts, and incorrect proofs when
indeed there is a conflict.

An object-oriented approach is introduced to model the
security policies using extended entity-relationship (EER) dia-
grams. The final axioms of the security polices are then
derived from the diagrams rather than directly from the natu-
ral language representation. The premise was that overall
logic rule formulation is simplified in a model-based approach
by capturing many of the rules in the structural model.

A case study comparing the two different approaches,
model-based and no prestructuring, produced results that
appear to support a premise that fewer structuring errors are
made with the model-based approach. A limitation of the
model-based approach is that potential queries which might
reveal conflicting security polices may be prevented.

� Table 1. A summary of languages that represent or support network policies.

Policy term Low Medium High Distributed High

PFDL Medium Medium High Centralized High

RPSL Low Low High Centralized Medium

PAX Low Low High Distributed Low

SRL Low Low High Distributed Low

Language Support Suitable for Suitable Target Ease of
automated integrated for access architecture representing
conflict services control network
detection policies

7 A proposition deemed to be self-evident and assumed without proof.

IEEE Network • January/February 200118

Policy Hierarchies for Distributed Systems
Management
In [26], Moffett and Sloman form a policy hierarchy by refin-
ing general high-level policies into a number of more specific
management policies. Refining the goals, partitioning the tar-
gets the policies affect, or delegating responsibility to another
manager can perform this derivation. The main motivation for
understanding hierarchical relationships between policies is to
determine what is required for the satisfaction of policies. If a
high-level policy is defined or changed, it should be possible
to decide which lower-level policies must be created or
changed.

The goal of policy hierarchy analysis is to determine
whether:
• The collected lower-level objectives will completely achieve

the higher-level objective they purport to refine.
• There is conflict between the objectives.
• There is an imperatival policy, with a subject, for each objec-

tive. An imperatival policy gives an agent the imperative to
carry out an action. In most cases this implies obligation.

• There is an authority policy that empowers the subject to
achieve the objective. An authority policy provides an agent
with the legitimate power to perform an action.

Conflicts in Policy-Based Distributed Systems
Management
In [27], policies are used as a means to specify the manage-
ment behavior of a system without coding the behavior into
the manager agents. Lupu and Sloman focus on techniques
and tool support for offline policy conflict detection and
resolution. Two types of policies, authorization and obliga-
tion, are addressed in this research. Authorization policy
specifies which activities a manger is permitted or forbidden
to perform on a set of target objects. Obligation policies
specify which activities a manager must or must not do to a
set of target objects and essentially defines the duties of a
manager.

Conflicts can arise in a set of policies, but it is not always
desirable to eliminate the conflicts by rewriting the policies or
changing the membership of the domains to which policies
apply. Since automated managers cannot enforce conflicting
policies, Lupu and Sloman suggest that a precedence relation-
ship must be established between polices in order to resolve
the conflicts. Four types of policy priority are addressed:
• Negative policies always have priority: negative policies take

precedence over positive ones.
• The assignment of explicit priorities: policy 1 has priority

over policy 2, which has priority over policy 3, and so on.
• Distance between a policy and the managed objects: priority

is given to the policy applying to the closer class in an
inheritance hierarchy. For example, a computer science
(CS) department is a subclass of a university. If a student is
in the CS department, policies of the CS department will
override those of the university when a conflict exists.

• Specificity related to domain nesting: a particular case of
distance between policies, this principle is that a more spe-
cific policy (i.e., a policy applying to a subdomain) refers to
fewer objects and so overrides more general policies apply-
ing to an ancestor domain.
Lupu and Sloman developed a prototype conflict detection

tool that currently detects overlaps between policies and
optionally applies domain-nesting precedence. The function of
the detection tool is analogous to compile-time type checking
for a programming language in that it reduces runtime errors
and detects specification errors.

A notation is used to represent policies that are precise and
can be analyzed for conflicts using automated tools, but it is
not based on a well-known logic. In this system an administra-
tor creates and modifies policies using a policy editor. Checks
are made for conflicts, and if necessary policies are modified
to remove the conflicts.

Sloman has applied the concept of grouping policies by autho-
rization and obligation, which is then interpreted rather than
coded into management agents in several other works [28–30].

A Formal Process for Testing the Consistency of
Composed Security Policies
In [31], Michael presents a formal process for testing the logi-
cal consistency of composed security policies. The introduc-
tion of a structural model is made to represent relationships
between security policies, and axiomatizes the policies so that
relationships constructed in the model are preserved and
made explicit in a logic model. This logic model is then used
for deductive proofs of policy consistency. Michael states that
problems arise in correctly defining, evaluating, and mapping
policies onto procedures, and that a structural model reduces
these types of gaps.

OTTER, an automated first-order resolution-style theorem
prover, is used to detect logical contradictions between the
axioms in the logic model.

The PAIR Project: Policy Analysis of Internet Routing
Although not based on formal logic, the PAIR tools [32]
developed under the PAIR Project [33] provide a means to
troubleshoot routing and policy problems in the Internet.
These tools are most useful in conjunction with the Route
Server Next Generation (RSng) route server. These route
servers can provide a router with its own view of the network
by gathering routing information from neighboring routers,
using a route selection procedure, and applying policy require-
ments for that particular router from the Internet routing reg-
istry. Once the routing information is processed, it is passed
using BGP to each router for its own view.

The PAIR tools allow peers to diagnose their routing and
policy problems by comparing prescribed policy (i.e., policy
registered in the Internet routing registry, with policy actually
being configured in the Internet. The analysis of routing poli-
cy provides the ability to find inconsistencies among policies.

You can also use the PAIR tools to:
• Learn how the policy in the Internet routing registry is pro-

cessed and used to generate router server configuration files
• Troubleshoot global routing problems
• Identify stale or inaccurate data in the Internet routing registry

Path-Based Policy Language
In this section a new language is introduced which is intended
to solve and/or alleviate many of those deficiencies, which
were discussed in the previous sections. This new language,
designed by the authors, is called the Path-Based Policy Lan-
guage (PPL).

PPL is designed to support policies that can be applied to
both the differentiated as well as integrated services models
proposed by the IETF. Several goals for our new policy lan-
guage are listed below:
• Create a path-based representation of policies flexible

enough to support both path- and non-path-based traffic
flows. For example, providing an absolute path consisting of
the links the traffic must take will provide greater control
over traffic flows and provide easier support to integrated
services. A less specific policy may only need to provide

IEEE Network • January/February 2001 19

source and destination nodes in its configura-
tion, or perhaps just the specification that all
traffic of, say, file transfers must be forwarded
through a specific node acting as a firewall in
an edge router.

• Represent network policies in an unambiguous
way. This feature will allow us to detect poli-
cies in conflict as well as create a stable net-
work environment.

• Be abstract enough to cross device and manu-
facturer boundaries. Providing a language that
is too specific will demand constant updates to
our language as well as to software on the ven-
dor’s devices.

• Have ability to resolve conflicts between policies. In order
for conflicts to be resolved, they first have to be detected.
Having conflicting policies without the means to detect and
resolve them is probably worse than having no policies at
all. An obvious example involves security access policies.
Having policies defined to restrict access to network
resources can build a false sense of security, when a rogue
policy conflicts with existing policies to provide access to
those same restricted resources. Believing that the restric-
tive policies are working may prevent network administra-
tors or security personal from verifying the protection,
which can have very serious consequences. To support the
detection of policy conflicts, a follow-on process is being
developed which will have the ability to translate policies
represented in PPL into formal logic. Once the policies are
represented in formal logic, a theorem prover can be uti-
lized to detect conflicts.
Figure 8 represents a summary of the constructs of our lan-

guage. Several examples of possible policies are provided to
show the wide range of policies that can be represented in this
path-based approach. Using the wild card character of “*,”
the ability exists to represent explicit paths as well as groups
of traffic flows with our language. This flexibility allows us to
represent policies based on QoS and at the same time support
existing best effort traffic.

In our language, policy conflicts can be resolved using any
of three methods:
• User identification can be used to provide priority of poli-

cies based on the creator of that policy.
• The action items of the policy can be used to assign a prior-

ity to an individual policy.
• The action items of the policy can also be used to declare

compromises where the priority of the policy is lowered if
certain conditions exist. Example 5 shows a policy that simi-
larly lowered its own allocated bandwidth for the general
good of the network.
The capabilities of our language are illustrated through the

use of several examples below. Example 1 shows the ability to
specify an explicit path for a traffic flow. Examples 2, 4, 5, 7,
and 8 use the “*” to specify partial paths for traffic flows. In
examples 3 and 6, the use of “*” places no restrictions on the
path the traffic may take.

In example 5 a policy is represented that will make a com-
promise when certain network conditions are met. This com-
promise feature provides the ability to throttle back network
flows for the general good of the network.

Example 1: Policy 1 <net_manager> @ {<1,2,5>}
{class = {faculty}} {*} {priority := 1}

This is a rule, which states that the path
starting at node 1, traversing to node 2, and
ending at node 5 will provide high priority for
faculty users.

Example 2: Policy2 <stone> @ {<*,2,*>, <*,4,*>} {*}
time >= 1600, time <= 0800}

This rule states that all traffic will be allowed to traverse
through nodes 2 and 4 during nonworking hours. Unless
granted by another policy, traffic will not be able to
traverse through nodes 2 and 4 during working hours. This
is as a result of the default action, which is an explicit
deny.

Example 3: Policy3 <net_manager> @ {*} {*}
{hopCount > 19} {deny}

This is a rule which states that no path in the network will
be permitted if it has a hop count greater than 19. This
example shows the ability to use explicit deny.

Example 4: Policy4 <net_manager> @ {<*,5,*> {*}
{hostIP = 131.1.*.*}

All hosts with a network address starting with 131.1 will be
permitted to traverse node 5. Having the ability to restrict
groups of network addresses as well as individual network
addresses is also a part of our language.

Example 5: Policy5 <xie> @ {<1,*,2,*,5>}

{traffic_class = {video, voice}, used_bw <= allotted_bw}

{allotted_bw = 50M, loss_rate (data) >
40% : allotted_bw := 40M}

This policy shows the ability for compromise. Voice and
video traffic are provided with an allotted bandwidth of
50 Mb/s, but when the network loss rate is greater than
40 percent, a compromise will be made to lower the
allotted bandwidth to 40 Mb/s. In this example used_bw
and allotted_bw are user-defined variables. The loss_rate()
function is implemented as a message passed from a
network device to the policy server.

Example 6: Policy6 <net_manager> @ {*}
{traffic_class = {data}} {*} {priority :=10}

All data traffic will be assigned a priority level of 10.
Assume that there are three classes of traffic for this
example, voice, video, and data. This allows for providing
higher or lower priority to certain classes of traffic. In this
case the priority might affect the ordering of packets being
dropped from queues in the network during times of
congestion.

Example 7: Policy7 <Betty> @ {<1,*,5>}
{traffic_class = {accounting}}

{day != Friday : priority := 5}

On all paths from node 1 to node 5, accounting class traffic
will be lowered to priority 5 unless it is a Friday. In this

� Figure 8. A summary of PPL constructs.

policyID<userID>@{paths} {target} {conditions} [{action_items}]
policyID –unique policy identification token
userID –user ID of policy creator
paths –network paths the policy affects
target –target class of network traffic
conditions –any global conditions (items are AND’ed)
action_items –for setting parameters (e.g., policy priority), declaring

compromises and explicit deny, etc.
action_item = [{condition}:] {actions}

Semantics: policyID created by <userID> dictates that target class of traffic
may use paths only if {conditions} is true after action_items are performed.

IEEE Network • January/February 200120

policy the action_items field is used with temporal
information to influence the priority of a class of traffic. It
might make sense to have this feature when departments of
a company need more network resources to accomplish
their jobs.

Example 8: Policy8 <net_manager> @ {<1,*,5>}
{traffic_class = {student}} {*}

{userID = Gary : deny}

On all paths from node 1 to node 5, deny access to network
traffic from user Gary who is in the student traffic class.
This policy shows that our language can provide control at
a very small granularity level. In this case the policy affects
only a single user in a particular class of network traffic. It
could have easily been modified to provide certain times of
the days when it was in effect as well.

In this section PPL was briefly introduced. Our language
has the ability to represent network policies unambiguously,
providing support to heterogeneous networks for which the
networks are controlled using explicit policies. Policies
required by both path- and non-path-based traffic flows are
supported with our language as well as the ability to resolve
conflict between policies.

Our current efforts [34] are directed toward fully specifying
the grammar of PPL. Examples 1–8 provide examples of our
language, but mechanisms have to be defined to support these
policies. Providing the ability for user-defined traffic classes is
one example. Constructing a compiler that will verify syntax
and detect policy conflicts will take our research forward by
providing a mechanism for running experiments.

Concluding Remarks
In this article, several policy languages were reviewed to sum-
marize their purpose, strengths, and weaknesses. Three policy-
based routing protocols are summarized for their use of
policies in networks. In addition, previous work and tech-
niques used in policy conflict resolution and detection using
formal logic were also discussed.

These languages fell into two major categories: abstract
network policy languages and bit-level traffic flow languages.
The first abstract language is known as the Policy Term,
defined by David Clark. It is based on the concept that Inter-
net resources are grouped into administrative regions. The
Policy Term was designed to provide for the specification of a
wide range of network policies to be represented by supplying
source and destination ARs. Other abstract languages are
PFDL, a hierarchical object language being designed by the
IETF and based on the Policy Information Model; and RPSL,
the current Internet routing policy specification language.
Examples of languages supporting bit-level details are PDL,
used for defining pattern matching criteria in policy-based
networking devices; and SRL, which specifies the flows to be
measured and how much information should be collected for
real-time traffic flow measurement.

It is clear that there is a need for policy conflict detection,
evident in the fact that many of the languages surveyed have
features to resolve conflicts once they are detected. What is
lacking is automatic methods for checking network policies
that are to be composed together in order to completely satis-
fy a corporation’s policy goals.

One clear method is to use formal logic to represent net-
work policies. Although this method would make conflict
detection much easier with the use of existing theorem
provers, most network policy implementers are not as com-
fortable with this representation.

The existing policy languages discussed in this article are
more suited to differentiated services than integrated services
as a result of an absence of features to support explicit path-
based policies.

Our goal is to develop a network policy language that is more
suited to what network policy implementers are accustomed to: a
rule-based representation more closely associated with a comput-
er programming language. Taking a path-based approach will
enable us to establish policies that will be based on paths, like
integrated services, as well as non-path-based policies which are
more suited to differentiated services. The use of a wild card
character enables us to describe policies based on the concepts of
differentiated services or best-effort traffic.

Path-based policies not only are a natural fit for integrat-
ed services, but will also aid in the scaling problem, which
can occur in supporting policies in large networks. A hierar-
chical view of a network, which is provided with concepts
such as autonomous systems and administrative domains,
can greatly reduce the information a route server must
maintain. One domain can represent multiple hosts, which
not only reduces the size of the database at a route server,
but also the information that must be passed between rout-
ing entities. This grouping of nodes into regions is only one
aspect in the scalability problem of enforcing policies in net-
works; the number of policies associated with a domain is
another. Path-based policies can aid in this problem by pro-
viding the ability to assign a single policy statement to mul-
tiple paths with one statement. For example, path <1, *, 3>
specifies all the possible paths from node 1 to node 3. A
policy using this path construct can specify network con-
straints that are applied to multiple paths. This aggregation
of paths can reduce the number of policy statements
required at a server.

Path-based policies provide a complexity advantage as
well. When a policy server associates policies with nodes
rather than paths, a valid path must be constructed for each
new request. This construction not only uses node connectiv-
ity information to build the possible paths, but applies the
policy information from each node as well. When a path
generation request involves a combination of service con-
straints, such as acceptable delay and acceptable throughput,
this is now an NP-complete problem. Path-based policies
associated with a completely instantiated path are analogous
to static routes. Rather than calculating a route through the
network, a valid route may be specified ahead of time. When
a path is specified in advance with the proper policy con-
straints, it will accelerate the response to a path request. It
may be advantageous to have multiple paths prespecified for
a route. These paths may be dynamically updated to account
for changing network conditions or situations such as time of
day. Multiple paths can also support quick rerouting of traf-
fic flows during network disruptions. However, precomputing
paths may also incur excessive overhead if not designed
appropriately. A mechanism that properly utilizes precom-
puted paths with the ability to compute a path on demand
would be advantageous.

Our current effort is the development of a compiler to
translate policies specified in PPL into formal logic. This will
provide us with a means to detect conflicting policies using
existing theorem provers. This development will allow us to
introduce formal logic into network policy management.

Acknowledgments
The authors would like to thank Prof. Bret Michael for his
review of this article and his insightful comments. The authors
would also like to thank the reviewers for their detailed and
very helpful comments and pointers to further references.

IEEE Network • January/February 2001 21

References
[1] J. Strassner and E. Ellesson, “Terminology for Describing Network Policy and

Services,” Internet draft draft-strasner-policy-terms-01.txt, 1998.
[2] J. Strassner, E. Ellesson, and B. Moore, Eds., “Policy Framework Core Infor-

mation Model,” Internet draft draft-ietf-policy-core-schema-02.txt, Feb. 1999.
[3] R. Rajan et al., “Policy Action Classes for Differentiated Services and Integrat-

ed Services,” IETF, Internet draft draft-rajan-policy-qosschema-01.txt, 5 Apr.
1999.

[4] X. Xiao and L. Ni, “Internet QoS: A Big Picture,” IEEE Network, vol. 13, no.
2, Mar. 1999, pp. 8–18.

[5] J. Boyle et al., “The COPS (Common Open Policy Service) Protocol,” Internet
draft draft-ietf-rap-cops-05.txt, Dec. 1998.

[6] J. Case et al., “A Simple Network Management Protocol (SNMP),” IETF Net-
work Working Group RFC 1157, May 1990.

[7] K. Lougheed and Y. Rekhter, “A Border Gateway Protocol (BGP),” IETF Net-
work Working Group RFC 1105, May 1989.

[8] K. Lougheed and Y. Rekhter, “A Border Gateway Protocol (BGP),” IETF Net-
work Working Group RFC 1163, June 1990.

[9] K. Lougheed and Y. Rekhter, “A Border Gateway Protocol 3 (BGP-3),” IETF
Network Working Group RFC 1267, Oct. 1991.

[10] K. Lougheed and Y. Rekhter, “Application of the Border Gateway Protocol
in the Internet,” IETF Network Working Group RFC 1268, Oct. 1991.

[11] J. Honig et al., “Application of the Border Gateway Protocol in the Inter-
net,” IETF Network Working Group RFC 1164, June 1990.

[12] C. Kunzinger, “Protocol for the Exchange of Inter-Domain Routing Informa-
tion among Intermediate Systems to Support Forwarding of ISO 8473,” IETF
working draft ISO 10747, Apr. 1994.

[13] S. Thomas, IPng and the TCP/IP Protocols, Wiley, 1996, pp. 319–50.
[14] M. Steenstrup, “An Architecture for Inter-Domain Policy Routing,” IETF Net-

work Working Group RFC 1478, June 1993.
[15] M. Steenstrup, “Inter-Domain Policy Routing Protocol Specification: Version

1,” IETF Network Working Group RFC 1479, July 1993.
[16] M. Steenstrup, “IDPR: An Approach to Policy Routing in Large Diverse Inter-

networks,” J. High Speed Nets., 1994, pp. 81–105.
[17] D. Clark, “Policy Routing in Internet Protocols,” IETF Network Working

Group RFC 1102, May 1989.
[18] J. Strassner and S. Schleimer, “Policy Framework Definition Language,”

Internet draft draft-ietf-policy-framework-pfdl-00.txt, 17 Nov. 1998.
[19] G. G. Xie et al., “SAAM: An Integrated Network Architecture for Integrated

Services,” Proc. 6th IEEE/IFIP Int’l. Wksp. QoS, Napa, CA, 1998.
[20] C. Alaettinoglu et al., “Routing Policy Specification Language (RPSL),” Inter-

net draft draft-ietf-rps-rpsl-v2-03.txt, Apr. 6, 1999.
[21] D. Meyer et al., “Using RPSL in Practice,” IETF Network Working Group

RFC 2650, Aug. 1999.
[22] M. Nossik, F. Welfeld, and M. Richardson, “PAX PDL — A Non-Procedural

Packet Description Language,” http://www.solidum.com/papers/pax-
pdel/pax-pdl-00.html, Sept. 30, 1998.

[23] N. Brownleee, “SRL: A Language for Describing Traffic Flows and Specify-
ing Actions for Flow Groups,” Internet draft draft-ietf-rtfm-ruleset-language-
07.txt, Aug. 1999

[24] L. Cholvy and F. Cuppens, “Analyzing Consistency of Security Policies,”
1997 IEEE Symp. Security and Privacy, 1997.

[25] J. B. Michael et al., “On the Axiomatization of Security Policy: Some Tenta-
tive Observations About Logic Representation,” Database Security VI: Status
and Prospects, 1992.

[26] J. Moffett and M. Sloman, “Policy Hierarchies for Distributed Systems Man-
agement,” IEEE JSAC, vol. 11, 1993, pp. 1404–14.

[27] E. Lupu and M. Sloman, “Conflicts in Policy-based Distributed Systems Man-
agement,” To appear in IEEE Trans. Software Engineering, Special Issue on
Inconsistency, 1999.

[28] M. Sloman, “Management Issues for Distributed Services,” Proc. IEEE 2nd Int’l.
Wksp. Services in Dist. and Networked Environments, June 1995, pp. 52–59.

[29] J. Moffett and M. Sloman, “User and Mechanism Views of Distributed Sys-
tems Management,” IEE/IOP/BCS Dist. Sys. Eng. J., vol. 1, no. 1, Aug.
1993, pp. 37–47.

[30] M. Sloman, “Policy Specification for Programmable Networks,” First Int’l.
Working Conf. Active Networks, June 1999.

[31] J. B. Michael, “A Formal Process for Testing the Consistency of Composed
Security Policies,” Dept. of Info. and Software Sys. Eng., George Mason
Univ., Fairfax, VA, 1993.

[32] The PAIR Project: Policy Analysis of Internet Routing, http://www.rsng.net/
pair/, 1999.

[33] Route Server Next Generation Project, http://www.rsng.net/, 1999.
[34] G. Stone, “A Path-Based Network Policy Language,” Dept. of Comp. Sci.,

Naval Postgrad. School, Monterey, CA, Sept. 2000.

Additional Reading
[1] B. Aiken et al., “Terminology for Describing Middleware for Network Policy

and Services,” Internet draft draft-aiken-middleware-reqndef-00.txt, April 30,
1999.

[2] M. Blaze et al., “The KeyNote Trust-Management System Version 2,” IETF
Network Working Group RFC 2704, Sept. 1999.

[3] A. Guillen, R. N. Kia, and B. Sales, “An Architecture for Virtual Circuit/QoS
Routing,” 1993 Int’l. Conf. Network Protocols, 1993.

[4] J. Kurose and K. Ross, Computer Networking A Top-Down Approach Featur-
ing the Internet, Addison-Wesley, 2000, pp. 152–53.

[5] B. Leiner, “Policy Issues in Interconnecting Networks,” IETF Network Working
Group RFC 1124, Sept. 1989.

[6]H. Mahon, “Requirements for a Policy Management System,” Internet draft
draft-ietf-policy-req-00.txt, September 1999.

[7] C. Villamizar, C. Alaettinoglu, and D. Meyer, “Routing Policy System Repli-
cation,” Internet draft draft-ietf-rps-dist-04.txt, Sept. 28, 1999.

[8] X. Xiao et al., “Traffic Engineering with MPLS in the Internet,” IEEE Network,
vol. 14, no. 2, Mar./Apr. 2000, pp. 28–33.

[9] R. Yavatkar, D. Pendarakis, and R. Guerin, “A Framework for Policy-based Admis-
sion Control,” Internet draft draft-ietf-rap-framework-01.txt, Nov. 1998.

Biographies
GARY N. STONE (stone@cs.nps.navy.mil) received a B.S. degree from the State
University of New York at Buffalo in 1987, an M.S. degree from Johns Hopkins
University in 1990, and a Ph.D. degree from the Naval Postgraduate School in
2000, all in computer science. He is currently a senior computer scientist with the
Department of Defense at Fort Meade, Maryland. His interests are in traffic man-
agement and network protocols.

BERT LUNDY (b.lundy@cs.nps.navy.mil) received a Ph.D. in computer science in
1988 from Georgia Tech, with emphasis on formal specification and analysis of
protocols. He continued to do research in formal protocol models, protocol test-
ing, and areas of networks. Since 1998 he has been investigating the problems
of telecommunications infrastructure, particularly in Mexico and Latin America,
and has developed a plan to develop Internet and telephone infrastructure in
Latin America.

GEOFFREY G. XIE (xie@cs.nps.navy.mil) received a B.S. degree in computer science
from Fudan University, China, in 1986, an M.S. degree in computer science and
an M.A. degree in mathematics from Bowling Green State University, Ohio, in
1988, and a Ph.D. degree in computer sciences from the University of Texas,
Austin, in 1996. From 1991 to 1993 he worked full-time as a project engineer at
Schlumberger Systems Center, Austin, Texas. He is currently an assistant professor
with the Department of Computer Science, Naval Postgraduate School, Monterey,
California, and leads an effort in developing an automated centralized network
management system that supports guaranteed and differentiated quality of services
and makes efficient use of network resources. His current research interests include
network autoconfiguration, traffic engineering, and security.

